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The Biological Coherence of Human Phenome Databases

Martin Oti,1 Martijn A. Huynen,1 and Han G. Brunner2,*

Disease networks are increasingly explored as a complement to networks centered around interactions between genes and proteins. The

quality of disease networks is heavily dependent on the amount and quality of phenotype information in phenotype databases of

human genetic diseases. We explored which aspects of phenotype database architecture and content best reflect the underlying biology

of disease. We used the OMIM-based HPO, Orphanet, and POSSUM phenotype databases for this purpose and devised a biological coher-

ence score based on the sharing of gene ontology annotation to investigate the degree to which phenotype similarity in these databases

reflects related pathobiology. Our analyses support the notion that a fine-grained phenotype ontology enhances the accuracy of

phenome representation. In addition, we find that the OMIM database that is most used by the human genetics community is heavily

underannotated. We show that this problem can easily be overcome by simply adding data available in the POSSUM database to improve

OMIM phenotype representations in the HPO. Also, we find that the use of feature frequency estimates—currently implemented only in

the Orphanet database—significantly improves the quality of the phenome representation. Our data suggest that there is much to be

gained by improving human phenome databases and that some of the measures needed to achieve this are relatively easy to implement.

More generally, we propose that curation and more systematic annotation of human phenome databases can greatly improve the power

of the phenotype for genetic disease analysis.
Introduction

The human genome is defined by the complete DNA

sequence and by the functional relationships between all

human genes. Similarly, the human phenome can be

viewed as the sum of all human phenotypes and the rela-

tionships that exist between the various diseases and traits.

By correlating networks of genes and phenotypes,1,2 we

can investigate disease pathobiology at the whole-phe-

nome scale.1–13 Such analyses build on the premise that

phenotypic overlap is a good predictor of genetic relation-

ships, and their success relies on the quality and amount of

the phenotype data.5,8,11–13

The importance of using adequate phenotype informa-

tion is obvious both for clinical diagnosis and for proper

disease classification for research studies. The concept of

disease families that can be organized into phenotype

networks has spurred new interest into more precise and

more comprehensive phenotype annotation.14–17 For

example, mutations in proteins involved in ciliary func-

tioning result in overlapping phenotypes, collectively

referred to as ciliopathies.18 The realization that features

such as retinopathy and kidney cysts are indicative of

disturbed cilium function has enabled the identification

of ciliary diseases based only on their phenotype,16,19,20

as well as the identification of novel ciliopathy genes.21

This and other examples suggest that much can be learned

from disease comparisons on a phenome-wide scale. Such

phenotype comparisons will need to become more sophis-

ticated as correlations are sought between genetic variants

and phenotypic features in ever greater detail, up to the

level of individual genotype-phenotype mappings across

the genome and across populations.22
The American
Here we analyzed three human phenotype data sets to

investigate which characteristics of the disease phenotype

descriptions in the available databases would maximize

their utility. We examined OMIM (Online Mendelian

Inheritance in Man)23 phenotype descriptions that had

been converted into structured form by using a recently

developed phenotype ontology called the HPO24 (Human

Phenotype Ontology). In addition we performed analyses

on the diagnosis-oriented Orphanet25 and POSSUM

(Pictures Of Standard Syndromes and Undiagnosed Mal-

formations)26 databases. By using the sharing of Gene

Ontology annotation as a measure of biological coherence

between diseases, we investigated the degree to which

phenotype similarity in these databases reflects shared

pathobiology for different treatments of the phenotype

data. It is important to note that differences in information

content and structure of the HPO, POSSUM, and Orphanet

databases preclude comparing them directly with each

other, so comparisons were always between different treat-

ments of data from a single database. To remove biases

that remain even when comparing treatments within

one database, all results were expressed relative to random

permutations of the phenotypes in that database.

We find that a fine-grained phenotype ontology

improves phenome representation, as does inclusion of

feature frequency estimates. In addition, we find that the

OMIM database that is most used by the community is

heavily underannotated, at least for the purpose of system-

atic phenotype comparisons. We show that this problem

can easily be overcome by simply adding data available

in the POSSUM database to improve phenotype represen-

tations in the structured HPO implementation of OMIM.

Our data suggest that there is much to be gained by
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improving human phenome databases and that some of

the measures needed to achieve this are relatively easy to

implement. Although manual curation and systematic

annotation of disease phenotypes may require substantial

investment, we feel that this is justified and necessary to

realize the full potential of systematic genotype-pheno-

type correlations and phenomics.

Material and Methods

Data Sets
In order to compare databases for the relationships between their

phenotype content and the underlying genetic architecture, we

first needed to formalize phenotype descriptions. Several current

disease phenotype databases already define their own standard-

ized feature terms. The diagnosis-oriented LDDB (London Dys-

morphology Database),27 Orphanet,25 and POSSUM26 databases

all use a controlled vocabulary to systematically annotate disease

phenotypes with features, an approach that facilitates differential

diagnosis. We used Orphanet and POSSUM in our analyses as

examples of such structured human phenome databases.

However, the largest phenotype database available, the OMIM,23

is intended to serve more as an information repository than as a

diagnostic tool. As such, it does not use a controlled vocabulary.

To enable phenotype comparisons to be conducted for this data-

base, previous efforts have employed text mining to convert the

free text records into feature lists, with terms defined in external

vocabularies.8,11 In this study, we used another recent conversion

of OMIM phenotype data, which uses a manually curated system-

atic hierarchical vocabulary (or ontology) to describe OMIM

phenotypes.24 This ontology, known as the Human Phenotype

Ontology (HPO), was used by its creators to annotate OMIM pheno-

types with feature lists based on annotation taken from the OMIM

database itself, converting it into a structured phenotype database.

The HPO is comprehensive, with more than 8000 terms organized

into a deep hierarchical structure (Table 1). We used HPO version

1.4, downloaded on December 18, 2008, restricting ourselves to

the 4345 syndromes that also had OMIM text descriptions

(excluded records listed in Table S3 available online).

The POSSUM and Orphanet phenotype data were received upon

request from the Murdoch Children’s Research Institute in Mel-

bourne, Australia, and the INSERM in Paris, France, respectively.

The POSSUM data (database version 5.7.3) were received in August

2007 whereas the Orphanet data were received in July 2008 (the

Orphanet database undergoes continuous development and does

not make versioned releases).

All disease to gene mappings were based on the mapping of

OMIM IDs to HUGO gene symbols in OMIM’s MorbidMap and

GeneMap files. The POSSUM and Orphanet diseases were mapped

to genes through their associated OMIM IDs.

Cluster Biological Coherence Score Calculation

Procedure
We used a cluster-based approach because we are interested in the

degree to which phenotypically similar diseases share pathoge-

netic mechanisms, as proposed by the syndrome family concept.3

We calculated phenotypic distances between syndromes based on

their feature vectors. This approach is described in detail in Van

Driel et al. (2006).11 In brief, we first used the hierarchical relation-

ships between features in the relevant feature ontology to supple-
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ment the feature vectors with their more general ancestor features,

and subsequently calculated the phenotypic distances between all

syndrome pairs by using the cosine similarity metric, which uses

the angle between the two feature vectors as distance measure.

After calculating the phenotypic distances between syndromes,

we hierarchically clustered the phenotypes by using average

linkage. We then partitioned the resulting dendrogram into

clusters by using the ‘‘Dynamic Tree Cut’’ algorithm,28 which

creates comparable cluster sizes across different dendrograms

(data not shown). This algorithm requires a minimum cluster

size as parameter, which we arbitrarily set to five syndromes in

order to prevent the creation of large numbers of trivially small

clusters, while also avoiding the forcing of dissimilar syndromes

into oversized clusters.

Upon partitioning the syndromes into clusters, we then calcu-

lated the average biological coherence of the clusters by by using

the ‘‘Gene Ontology’’ (GO) gene function annotation29 (version

1.642) as genetic relatedness measure (the gene to GO mapping

was downloaded from the Ensembl database30 version 46 on

August 28, 2007). We considered several different measures of

gene function similarity such as shared biochemical pathways,

shared protein domains, and protein-protein interactions, and

we chose to use GO annotation because it directly reflects many

different kinds of functional relatedness and has the largest and

most dense coverage of genes (Table S1).

Cluster biological coherence was calculated as follows. First,

we retrieved the GO terms associated with the disease genes under-

lying cluster syndromes. These GO terms were then pooled across

Table 1. Overview of the Considered Syndrome Databases

OMIM

Orphaneta POSSUM HPOb MimMinerc

Num. syndromes 2070 3167 4779 5948

Num. features in ontology 864 1115 8275 1368d

Feature ontology depth:
max. (median)

4 (2) 2 (2) 13 (6) 15 (5)

Median num. features
per syndrome: original
(expanded)e

13 (25) 22 (34) 7 (20) 8 (22)

Num. syndromes mapped
to disease genes

668 924 2053 2055

Num. disease genes 1038f 986 2019 1937

Reference 25 26 24 11

a Only the feature-annotated Orphanet syndromes were included in this
analysis. There were a total of 7435 syndrome IDs in the full Orphanet
database. However, Orphanet uses clinical syndrome definitions, which are
broader than the locus-based syndromes in databases such as OMIM. As
a result, multiple IDs associated with the same clinical syndrome are not
separately annotated with features.
b The Human Phenotype Ontology contains phenotype annotation for a subset
of OMIM syndromes as well as some OMIM genes. We restricted ourselves to
the 4345 syndrome records with text descriptions.
c The MimMiner text-mining conversion of the OMIM database is listed for
comparison, but was not used in this study.
d The ‘‘Anatomy’’ (A) and ‘‘Pathological Conditions, Signs, and Symptoms’’
(C23) parts of the MeSH ontology were used in the MimMiner approach.
e The number in parentheses refers to the median number of features per
syndrome after the syndrome feature vectors are expanded to include the
feature’s ontological ancestors in the feature vector.
f The Orphanet database used originally contained 569 disease genes, but this
number was expanded to 1935 via syndrome-to-gene mappings from the
OMIM database. 1038 of these were associated with feature-annotated
syndromes.
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all genes causing the same syndrome, resulting in a set of GO terms

annotated to the syndrome. To incorporate ontological relation-

ships between GO terms into the comparison, we added all term

ancestors to the GO term set, excluding the root terms for the three

GO categories. This approach has been shown to work as well as

more complicated approaches.31 For each syndrome pair, we deter-

mined the GO term overlap between the two syndromes:

Spði,jÞ ¼ n
�
GiXGj

��
n
�
GiUGj

�
(1)

where Sp(i,j) is the pairwise GO term overlap score for diseases i and

j, n is the number of GO terms meeting the specified criteria, and

Gi and Gj are the sets of GO terms associated with diseases i and j,

respectively. For each cluster, the mean pairwise overlap was used

as the biological coherence score for that cluster:

Sc ¼
Xn

i,j

Spði,jÞ=n (2)

where Sc is the genetic cohesiveness score for cluster c, Sp(i,j) is the

GO overlap score for diseases i and j, and n is the number of disease

pairs in the cluster. The mean biological coherence score across all

clusters was used as the overall cluster biological coherence score

for the database:

S ¼
Xn

c

Sc=n (3)

where S is the overall genetic cohesiveness score for the phenotype

data set, Sc is the genetic cohesiveness score for cluster c, and n is

the number of clusters in the phenotype data set.

Randomizations
We did not compare the cluster biological coherence scores

between data sets directly because the many differences between

the databases would make it hard to determine which aspects of

the database did cause the variation in the biological coherence

score. Instead, we compared the scores of the actual data sets to

those of randomly permuted data sets. Randomization was done

by reshuffling the features over the diseases, while maintaining

the phenotypic structure of the data sets. Thus, feature frequencies

in the data sets and feature distributions across diseases were main-

tained, and only the feature assignment to diseases was random-

ized. In this randomization approach, disease to gene mappings

are maintained, correcting for biases resulting from the sharing

of genes between diseases, variation in number of genes per

disease, and function annotation bias of genes, because these

remain identical across both actual and randomized data sets. As

final biological coherence measure, we used the ratios of the

cluster biological coherence scores of the actual data sets to those

of 30 randomized variants. These ratios were used as performance

metric for evaluating effect of weighting schemes or other data-

base properties. All ratio comparisons were done with the

nonparametric two-sided Wilcoxon rank sum test with continuity

correction as implemented in the R statistical software package.

HPO Supplementation Analyses
The OMIM disease phenotype annotation used by the HPO was

supplemented with feature annotation from the POSSUM data-

base. We excluded the more detailed skeletal features—those

with feature IDs above 746—which were added later to the

POSSUM database in order to better describe the skeletal abnor-

malities that this database is oriented toward. This supplementa-

tion resulted in the increase in median number of features per
The American
disease from 14 to 38 for those diseases that could be supple-

mented. We performed the comparisons between the original

and the supplemented HPO data sets by using only the 1950

syndromes that could be supplemented with at least one POSSUM

feature. The supplemented feature vectors were further processed

analogously to the original feature vectors.

HPO Feature Ontology Truncation Procedure
The HPO feature ontology contains more than 8000 features orga-

nized into a deep hierarchical structure with a median feature

depth of 6 and a maximum depth of 13. We mapped all features

located at a depth level of five or higher (i.e., four or more steps

from the root of the HPO ontology) to their more general ancestor

features at the fourth level, resulting in a set of 1833 more broadly

defined features. Where a deep feature had multiple ancestors at

this level, it was mapped to all of them. Syndrome feature vectors

were modified with this feature mapping, with deeper features

being replaced with their appropriate fourth-level ancestor

features. All features were registered only once per feature vector,

regardless of how many deeper features they replaced. These modi-

fied feature vectors were further processed analogously to the full

ontology-based feature vectors.

Orphanet Feature Occurrence Frequency Weighting

Scheme
Orphanet features are annotated with occurrence frequency

estimates. These frequency estimates are divided into three classes:

Very Frequent, Frequent, and Occasional. To investigate the effect

of incorporating feature frequency estimates on syndrome clus-

tering, we weighted these three frequency classes with the weights

1.0, 0.1, and 0.01, respectively. We contrasted this scheme with

one in which the assignment order was reversed, assigning

a weight of 1.0 to the Occasional frequency class and 0.01 to the

Very Frequent class. These weighted feature vectors were further

processed analogously to the unweighted feature vectors.

Inverse Document Frequency Weighting Scheme
Features in feature vectors were weighted via the inverse docu-

ment frequency algorithm (Equation 4), which assigns higher

weights to features occurring in fewer syndromes:

Fidf ¼ log2

�
n=nf

�
F (4)

where Fidf is the IDF-weighted feature score, n is the total number

of phenotypes, nf is the number of phenotypes with the feature,

and F is the original feature score. In this scheme, weights increase

logarithmically with rarity. All weights were subsequently rescaled

to the 0–1 range. These weighted feature vectors were further pro-

cessed analogously to the unweighted feature vectors.

Statistical Analysis
Biological coherence scores were compared between data sets via

the Wilcoxon signed rank test with continuity correction as imple-

mented in the R statistical software package. This test does not

assume normally distributed data.

Results

Incomplete Phenotype Descriptions Impair Phenome

Coherence

The median number of phenotype features per disease in

the OMIM-based HPO phenotype annotation (7) is much
Journal of Human Genetics 85, 801–808, December 11, 2009 803



Figure 1. Comprehensively Annotated Syndromes Cluster Better than Sparsely Annotated Syndromes
(A) The Ehlers-Danlos and Charcot-Marie-Tooth syndrome families overlap in the phenome landscape of the OMIM data set, but
separate when the phenotype descriptions are supplemented with POSSUM annotation. The phenome landscapes were created with
multidimensional scaling of the HPO feature-based OMIM distance matrices (left), supplemented with POSSUM annotation (right).
The more similar the annotations of two syndromes are, the closer they are on the landscape. The background colors indicate the density
of syndromes in that region of the landscape. Lighter colors represent higher densities.
(B) Mean phenotypic similarity is consistently greater for the POSSUM-supplemented OMIM data set (red dashed lines) than for the
original OMIM data set (blue dashed lines). Besides Ehlers-Danlos (n ¼ 12) and Charcot-Marie-Tooth (n ¼ 12), the more phenotypically
diverse family of ciliopathies is also shown (n ¼ 59; Table S2). Continuous lines show the distributions of mean distances for randomly
composed syndrome families of equivalent size (n ¼ 107) for the original and supplemented OMIM data sets.
less than it is for the POSSUM and Orphanet databases (22

and 13, respectively) (Table 1). We reasoned that increasing

phenotype annotation in the HPO might aid the discovery

of biological relationships between diseases in that data-

base. We investigated this by supplementing the OMIM

disease annotation with features from the POSSUM data-

base, thus increasing the HPO disease annotation almost

3-fold from 14 features per disease to 38 features per

disease. We then hierarchically clustered all HPO pheno-

types based on their feature similarities, creating a disease

network that we could link to the biological function of

disease genes. The biological coherence of resulting HPO

phenotypic clusters was measured by the degree to which

disease genes shared GO function annotation. In brief,

GO terms were pooled across genes per disease, and the

mean degree of GO annotation overlap between all disease

pairs in a cluster was used as the cluster biological coher-
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ence score. The mean score over all clusters was used as

the final biological coherence score for the data set (see

Material and Methods for more detailed description of

procedure).

Enriching the OMIM annotation in the HPO with

POSSUM annotation does indeed lead to improved pheno-

typic clustering of known syndrome families (Figure 1).

The 12 annotated subtypes of Ehlers-Danlos syndrome

and of Charcot-Marie-Tooth disease segregate better

(Figure 1A) and the detection of similarity between the

phenotypically more diverse ciliopathies is also increased

(Figure 1B). With enriched phenotype descriptions, the

HPO disease similarity matrix reflects underlying genetic

relationships to a much greater degree (Figure 2A; p <

10�16, two-sided Wilcoxon signed rank test). We conclude

that the OMIM database from which the HPO phenotype

annotation was taken is currently greatly underannotated
er 11, 2009



Figure 2. Biological Coherence of Phenotypic Clusters for Different Data Sets and Conditions
The box plots show relative enrichment of shared GO terms for genes associated with diseases within clusters compared to randomly
permutated phenotype data sets (n ¼ 30). Box limits show the 25th and 75th percentiles, whiskers extend out up to 1.53 the box range,
and points outside this range are plotted individually.
(A) The full HPO ontology results in biologically more coherent phenotype clusters than a simplified HPO ontology containing only
more general features, but only when the OMIM phenotypes are supplemented with POSSUM annotation (purple boxes).
(B) Artificial underannotation of the POSSUM and Orphanet databases by randomly halving the syndrome feature lists (‘‘sparse’’) leads to
strong reductions in cluster biological coherence. However, limiting the Orphanet syndrome descriptions to just the very frequent
features has limited impact on cluster coherence, despite the strong reduction in the average number of features per syndrome to
just 57% of the original.
(C) Weighting Orphanet features according to their prevalence within affected patients improves the biological coherence of clustered
phenotypes. Counter-weighting them by assigning higher weights to less frequently occurring features abolishes the biological
coherence of the resulting phenotype clusters almost completely.
(D) Weighting annotated features according to their specificity (number of syndromes they occur in) via the inverse document frequency
(I.D.F.) weighting scheme diminishes cluster biological coherence for well-annotated POSSUM syndromes, but improves it for
underannotated syndromes.
and that this affects its performance on detecting bio-

logical relationships between disease phenotypes.

We further demonstrated this point by artificially under-

annotating the well-annotated POSSUM and Orphanet

syndromes, through the random elimination of half the

annotated features per syndrome. As expected, the perfor-

mance of POSSUM and Orphanet is much reduced when

half of the annotated features are randomly removed

(Figure 2B; p < 10�16 in both cases, two-sided Wilcoxon
The American
signed rank test). These results underline the importance

of complete phenotype descriptions for phenotype-based

disease analysis and highlight the limitations of using

the OMIM database for such analyses.

Detailed Feature Ontologies Improve Phenome

Coherence

We then asked whether one would require a highly

detailed feature ontology as recently developed in HPO
Journal of Human Genetics 85, 801–808, December 11, 2009 805



in order to accurately reflect the biology that underlies

inherited diseases. Such feature ontologies organize disease

features into a hierarchical structure, with deeper features

becoming progressively more specific. The HPO has

a comprehensive feature ontology containing more than

8000 features, in contrast to the POSSUM and Orphanet

ontologies that both contain about a thousand features

each (Table 1). It also has the deepest ontology, with a

median feature depth of 6 (as opposed to 2 for the POSSUM

and Orphanet ontologies) and a maximum depth of 13 (as

opposed to 2 and 4 for POSSUM and Orphanet, respec-

tively).

To investigate the benefits of such a highly detailed

ontology, we first hierarchically clustered all HPO pheno-

types based on their feature similarities. This created a

disease network that we could link to the biological func-

tion of disease genes. We then repeated the analysis by

using a simplified version of HPO truncating the feature

tree at three steps from the root of the ontology. This

procedure reduced the HPO feature set from a total of

8275 to just 1833 features.

Surprisingly, an initial comparison indicated that the

highly detailed feature ontology of HPO did not improve

the degree to which phenotype clustering reflects biolog-

ical relationships between disease genes (Figure 2A). In

fact, the use of more detailed feature definitions had a

slightly detrimental effect (p < 10�4, two-sided Wilcoxon

signed rank test). However, this is likely an artifact of the

previously noted underannotation of diseases in OMIM.

To confirm this, we repeated the experiment with the

HPO disease annotation that had been supplemented

with features from the POSSUM database (Figure 2A). As

could be expected, the detailed phenotype ontology did

indeed improve phenome representation. The full HPO

feature ontology performed better on biological coherence

of phenotype clusters relative to the simplified ontology

(p < 10�14, two-sided Wilcoxon signed rank test). This

result highlights two effects: first, detailed and comprehen-

sive feature ontologies such as HPO enable improved

phenotype description; and second, underannotation of

disease phenotypes severely limits the benefits of such

detailed feature ontologies.

Using Feature Occurrence Frequency Can Improve

Phenome Coherence

We then asked whether all phenotypic features are of equal

importance to the overall disease phenotype. We first

restricted the phenotype descriptions to those features

that occur very frequently in the respective diseases. Even

though this leads to a considerable reduction of features

per syndrome (median 57% of original features), the bio-

logical coherence scores remained high (Figure 2B). This

result shows that the core phenotypic features that occur

most commonly in a disease best reflect the underlying

biological relationships.

Consistent with this, we found that if we emphasized

commonly occurring features and assigned lower weights
806 The American Journal of Human Genetics 85, 801–808, Decemb
to infrequent features, a more biologically relevant pheno-

type clustering was obtained (Figure 2C; p < 10�8, two-

sided Wilcoxon signed rank test). By contrast, emphasizing

infrequent features by assigning them higher weights

almost completely abolished any recognizable biological

coherence of phenotype clusters (Figure 2C; p < 10�16,

two-sided Wilcoxon signed rank test). Thus, whereas the

weighting of phenotypic features based on their frequency

of occurrence improves disease classification, emphasizing

features that are not part of the core phenotype may have

a severe detrimental effect. This result clearly argues for the

systematic curation of phenotype data. More specifically,

the inclusion of feature frequencies appears to be a require-

ment for optimal phenotype representation, a feature that

is currently available only in Orphanet.

Emphasizing Rare Features Is Detrimental

to Phenome Coherence

It has previously been suggested that those features that

occur in many diseases will be too general to discriminate

between diseases, and too common to aid in specifying the

pattern of features that defines a disease family. Rarer

features might be more informative for the underlying

biology.8,11 We investigated this assumption for the

systematically annotated POSSUM database. In contrast

to previous studies,8,11 we find that a weighting scheme

that uses the standard ‘‘inverse document frequency’’ (or

IDF) score is detrimental to the biological coherence

of similar phenotypes (Figure 2D; p < 10�7, two-sided

Wilcoxon signed rank test). Interestingly, this holds only

for fully annotated syndromes because underannotated

syndromes do benefit from emphasizing rarer features

(Figure 2D; p < 10�12, two-sided Wilcoxon signed rank

test). This explains previous results, which were based on

text mining of less well-annotated phenotypes. We

conclude that overall phenotypic similarity is generally

more indicative of underlying genetic relationships than

the sharing of specific features that are observed in a few

syndromes or diseases only.

Discussion

Here, we have used a biological coherence score based on

the sharing of GO annotation between diseases. We use

this scoring system to identify database characteristics

that enable a better clustering of related disease pheno-

types. GO annotation is currently the most comprehensive

description of protein function. Nevertheless, other more

specific measures of the similarity between gene products

exist, such as shared biochemical pathways,32 shared

protein domains,33 and protein-protein interactions.

These support the general trends we observe based on

the GO annotation, although smaller effects are less visible

(Table S1 and Figures S1, S2, and S3).

Our analysis of the OMIM-based HPO, POSSUM, and Or-

phanet structured disease phenotype databases highlights
er 11, 2009



three areas where improvements of phenotype annotation

are required. First, the disease phenotypes in the fre-

quently used OMIM database are underannotated, and

this severely impairs the degree to which its phenotypes

reflect underlying disease pathology. There is therefore

a strong need to increase the phenotype annotation in

OMIM, for instance by transferring annotation from other

more comprehensive sources such as the POSSUM data-

base. Although this can be done manually, the use of

feature ontologies can greatly facilitate this process by

enabling the automated transfer of annotation between

databases. The HPO provides such a feature ontology for

the OMIM database, which makes it easy to transfer anno-

tation from another structured phenotype database. With

it we have shown that the number of features per disease

in OMIM can easily be increased, and this should much

improve its applicability for phenome-scale analyses. Our

second major finding is that a simple score of the

frequency of feature occurrence per disease, as is imple-

mented in Orphanet, refines the phenotype description

and improves database performance. Third, the use of

detailed and comprehensive feature ontologies such as

the HPO can further improve phenotype descriptions,

but only if the phenotypes are not underannotated. In

addition to these database-related findings, our analysis

also highlights a potential pitfall for phenome-scale anal-

yses as emphasizing phenotype features that are rare in

the databases does not allow one to cluster diseases more

efficiently. These findings have implications for future

and perhaps current database design.

Clearly, current human phenotype databases were

intended as repositories, as tools for accurate clinical diag-

nosis of syndromes, and to provide references to a selection

of the pertinent literature for specific genetic diseases and

syndromes. One could therefore argue that our plea for

improvement is demanding something that lies outside

the original scope for which these databases were designed.

In contrast, we would argue that our ability to compare and

group genes based on their sequence and function has

proven to be of immense use for genome scientists. We

therefore believe that the human phenome deserves a repre-

sentation that allows scientists to be similarly inquisitive

and creative in distilling biologically relevant patterns.

Further down the line, we need to improve the collec-

tion of phenotype data as well as their storage. Although

curators can standardize phenotype recording in data-

bases, such efforts could be greatly assisted by the stan-

dardization of phenotype recording in the clinic.15,16

Such standardized reporting would require controlled

feature vocabularies, of which there are several in exis-

tence24–27 or under development.34 Given the difficulties

of designing feature vocabularies and their importance in

phenotype analysis, it might be beneficial to unify termi-

nology across vocabularies. Ultimately, a complete human

phenome description incorporating all human phenotypic

variation14—including molecular phenotypes35—would

be most desirable for correlating phenotype variation to
The American
genetic variation. Such analyses could even be performed

at the level of individual genomes and phenotypes once

sufficient data from initiatives such as the Personal

Genome Project become available.22 We believe that the

time is ripe for the allocation of substantial resources to

improve human phenome annotation on the one hand

and to foster the more systematic storage of such data in

human phenotype databases on the other.

Supplemental Data

Supplemental Data include three figures and three tables and can

be found with this article online at http://www.cell.com/AJHG.
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Web Resources

The URLs for data presented herein are as follows:

Ensembl database, http://www.ensembl.org/

HPO main website, http://www.human-phenotype-ontology.org/

HPO download, http://bioportal.bioontology.org/ontologies/40381

GO main website, http://www.geneontology.org/

GO download, http://bioportal.bioontology.org/ontologies/40634

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/

Orphanet, http://www.orpha.net/

POSSUM, http://www.possum.net.au/

R statistical software package, http://www.r-project.org/
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